
Reliability Management for Blockchain-Based Decentralized Multi-Cloud

Atakan Aral
TU Wien

Vienna, Austria
atakan.aral@tuwien.ac.at

Rafael Brundo Uriarte
TU Wien

Vienna, Austria
rafael.uriarte@tuwien.ac.at

Anthony Simonet-Boulogne
iExec Blockchain Tech

Lyon, France
asb@iex.ec

Ivona Brandic
TU Wien

Vienna, Austria
ivona.brandic@tuwien.ac.at

Abstract—Blockchain-based decentralized multi-cloud has
the potential to reduce cloud infrastructure costs and to
enable geographically distributed providers of any size to
monetize their computational resources. In this context, guar-
antees that the computational results are delivered within the
promised time and budget must be provided despite the limited
information available about the location and ownership of
resources. Providers might claim to execute the services to
get compensated for the computation even though returning
incomplete or incorrect results. In this paper, we define a model
to predict provider reliability, that is, the probability of failure-
free execution of computational tasks and correctness of the
computed outputs, by extracting the potential dependencies
between providers from historical log traces. This model can
then be utilized in the definition of provider reputation or the
scheduling of new services. Indeed, we propose a probabilistic
scheduler that chooses the providers that meet the reliability
constraints among others. Finally, we validate the proposed
solutions with real traces from a decentralized cloud provider
and hint at the benefits of predicting reliability in this context.

Keywords-Cloud Computing; Reliability; Smart Contracts;
Distributed Ledgers; Blockchain; Distributed Management

I. INTRODUCTION

Blockchain-based decentralized multi-cloud (BDMC) [1],
[2], [3] combines smart contracts and blockchain to solve
critical issues of traditional clouds, such as partial global
coverage, vendor lock-in, and limited service offerings [4].
Service providers offer cloud services in the multi-cloud
environment, consumers search and contract with these ser-
vices, and the transactions are registered in the blockchain.
These platforms automate the whole service life cycle,
including the verification of the result correctness, which is
regulated by consensus protocols based on the majority of
votes. The role of the platform is critical in such scenarios,
as small providers and fog nodes are especially prone to
failures, since they are geographically dispersed, ad-hoc,
low capacity, and lacking advanced support systems [5].
Additionally, BDMC presents the risks of Byzantine failures
and malicious behavior, including servers claiming to run
the tasks but returning incomplete or incorrect results to get
compensated without fully providing the service.

In this context, reliability is a particularly important
requirement as consumers have little or no knowledge of the
resource location and ownership. Here, reliability is defined
as the failure-free execution of computation tasks and the

correctness of computed outputs. Due to the novelty of the
underlying technologies, however, there are several research
challenges related to reliability. The first challenge is how to
define the desired level of reliability by the consumer in a
smart contract. Availability, which is usually communicated
through downtime, number of nines, or minimum service
level, and reputation, is handled differently by the existing
solutions [1]. In an attempt to standardize and simplify the
terminology and to account for uncertainty, we propose a
probabilistic approach for representing reliability in BDMC.

Another challenge is the accurate forecasting of the future
reliability of a provider. Our previous work already showed
that failures in geographically distributed computation nodes
show a certain level of correlation [5]. In current work, we
also hypothesize that the correctness of the results provided
by seemingly independent providers can be correlated due
to joint ownership. Moreover, such providers may decide
to act maliciously only when they believe they have the
numbers to impact the consensus for a particular task. To
this end, our approach extracts the dependencies between
the providers from historical log traces and incorporate
them into our forecasting model. Finally, we also focus on
the decision problem of choosing the providers that meet
reliability requirements to schedule tasks. In summary, the
following are our main contributions of this work.

• Three Bayesian network (BN) models for the reliability
of providers representing the correlations between them
with corresponding uncertainty (Sec. III),

• A reliability predictor for the services that are executed
by multiple providers based on the models (Sec. III),

• A task scheduling algorithm that exploits redundancy to
give probabilistic guarantees for correctness (Sec. IV),

• Extensive evaluation using traces from a BDMC plat-
form, iExec [6], and insights (Sec. V and VII).

The proposed computation verification mechanism is
novel in the following aspects: (i) it does not assume
that BDMC providers are independent and uncoordinated;
(ii) its reliability evaluation is preemptive, which brings
cost and response time reductions; and (iii) it distinguishes
inadvertent failures from malicious actions. A comparison
to the previous work is presented in Sec. II and Sec. VI.

Figure 1. Decentralized Multi-Cloud Architecture. This Paper Proposes Improvements to the Scheduling and Validation Processes (Highlighted in Yellow).

II. DECENTRALIZED MULTI-CLOUD ENVIRONMENTS

The Bitcoin and Ethereum boom and the recent devel-
opments in other distributed ledgers and smart contracts
facilitated the security and trust in payments as well as
verification of results. The blockchain [7] is an implemen-
tation of the distributed ledgers concept, which securely
registers transactions, even in completely decentralized sys-
tems, and removes the need for trusted intermediaries; the
only trusted element being the distributed and verifiable
computing system. Smart Contracts are self-executing digital
agreements between the provider and the consumer, which
are flexible enough to represent various requirements and
are consistently executed by a network of mutually distrusted
nodes, without the arbitration of a trusted authority. Together
these solutions encouraged the development of various de-
centralized solutions independent of individual providers [1].

In the cloud, the situation is similar and several ongoing
projects attempt to create decentralized solutions for the
cloud/fog market. In this context, BDMC could lower the
infrastructure costs and bring predictable results by offering
a purely decentralized system that manages the life cycle
of cloud services and applications, does not depend on the
market trust of individual partners, and paves the way for a
truly open cloud market. Moreover, it enables geographically
distributed providers of any size to offer computational
resources, which could also boost fog computing offerings
and adoption. In our previous work [1], we present a
thorough analysis of these projects, discuss those benefits
and challenges involved in building decentralized cloud/fog
solutions and supply an overview of the applicable standards.

Fig. 1 depicts the high-level architecture of a typical
BDMC platform. Here, Application and Data Providers cre-
ate their applications/services/data and make them available
in the Marketplace. The marketplace, normally defined in a
smart-contract, contains the offers of computing resources
time and the data sets and applications available in the
BDMC. Consumers negotiate the terms of the service to ac-
cess these applications and create a smart contract to manage
the service provisioning. Then, the service is submitted to
a Worker Pools, namely a group of workers managed by a
broker in charge of offering to the consumers the available
computing resources of workers, who execute the task
according to the terms defined in the smart contract (e.g.,
response time and availability). The results are validated

and, if correct, sent to the consumer. In this work, we focus
on Scheduling and Validation processes by calculating the
probabilities of failures or incorrect results.

Due to low throughput and the high processing costs in
public blockchains, a BDMC has two different networks: the
side-chain, also known as task network; and the main-chain
or the transaction network [8]. The main-chain makes use
of the blockchain to (more) safely register transactions, the
smart contracts, regulate payments and reputation of the par-
ticipants. The so-called side-chain, normally have restricted
access (permissioned blockchain) and are publicly verifiable
(e.g., transactions and smart contracts) by a smaller set
of users. In the BDMC context, the side-chain manages
all tasks that require processing by rewarding providers
for computational resources, who communicate through a
P2P network. It executes the actual services; marketplace
that supports negotiation; and result verification module that
verifies the service execution according to the specification.

However, the use of different networks raises several
challenges, particularly because the side-chain is not pub-
licly auditable. Smart contracts are designed for determin-
istic environments and trade-off immutability and trust for
flexibility. Determinism is required by such contracts since
a significant part of the network nodes executes them to
achieve consensus (based on a specific protocol) over the
fulfillment of the agreement terms. However, results of
computation or monitoring information from the side-chain
are non-deterministic and their use can lead to different
results between the nodes executing the smart contracts and
could break the consensus. Therefore, an interface called
Oracle is needed to retrieve information from the side-chain.
The Oracle receives monitoring data and inserts them into
the transaction network to verify the results.

A. Computation Verification

Verifying the results of computation executed by third-
parties is among the biggest challenges in decentralized
clouds. The verification needs to prevent malicious actions
by providers, who could come up with random (or partially
executed) results (in order to save computation time or
energy) but still earn the reward for the service, as well
as consumers who could claim that results are not correct
to harm the reputation of providers. The main computation
result verification methods are log verification, correctness
checking, and redundant computation. However, logs can

be replaced; correctness checking works only on some
classes of problems that could be detected by providers
and used to deceive consumers; whereas redundant exe-
cution requires extra computation and does not work for
stateful applications. For example, several machine learning
algorithms are stateful so the whole computation has to be
rerun to compare the results. Moreover, results concerned
with random numbers or inputs cannot be verified currently.
Among existing solutions, [9] requires redundant computing,
application code to be open, and ability to stop and resume
execution, whereas [10] uses interactive protocols to check
proofs that are costly and limited to a class of problems.

Since the verification solutions have several limitations,
BDMC platforms use escrow accounts to hold stakes from
the involved parties, which are redistributed only between
the parties with the verified results. In iExec, for instance,
consumers define the trust level, which impacts the level
of replication, and stake the funds for compensating the
workers that correctly execute the task. In parallel, worker
pools advertise their trust level, based on the number of
workers in the pool and on the workers’ reputation. When
chosen, workers also stake funds as a guarantee of correct
execution. Workers then send the results to the Proof of
Contribution (PoCo) protocol, which evaluates the results
based on the majority, reputation and the stakes provided.
The scheduler dynamically adds new workers to the task dur-
ing execution until the required confidence level is reached.
All the workers that contributed the correct result are paid
an equal share of the consumer’s stake; the ones with wrong
results have their stakes distributed to the correct ones.

In this work, we improve computation verification in
BDMC in three ways. First, we eliminate the assumption
in [11] that workers are independent and do not coordi-
nate their behavior. Malicious workers could maintain a
high reputation and avoid loss of stakes when they are
outnumbered by others in a task, whereas jointly owned
workers assigned to the same task could coordinate their
outputs to gain the majority and get compensated without
processing the task. We demonstrate that this is in almost
5% of the tasks if only 3% of the workers are malicious
(see Sec. V-E2). Second, we propose a preemptive approach
that determines the set of workers that is most probable to
reach a correct consensus before the execution. Gradually
adding workers during execution increases response time
significantly for computation-intensive tasks in particular.
Moreover, the random selection of workers would result in
higher redundancy, and hence higher cost, with respect to our
dependency-aware mechanism. Finally, we bring inadvertent
failures into the equation in contrast to escrow accounts,
which are unable to discourage or avoid them.

III. PREDICTION MODELS

Our hypothesis is that the malicious behavior of differ-
ent workers exhibits correlation, similar to the inadvertent

Table I
COMMON NOTATION AND SYMBOLS USED IN THE PAPER

Notation Definition
m Number of tasks included in the log traces, m ∈ N
n Number of workers present in the platform, n ∈ N
ri≤n Random discrete variable representing the status of a worker
rn+1 Random binary variable representing the status of a task
k Number of replicas (i.e. workers) for a task, k ∈ N ≤ n
t Trust parameter of a task, t ∈ N
W Set of all workers involved in a task, |W | = k
ω The output returned by a worker
K Consensus reached by the workers of a task
G Structure graph of a Bayesian network, G = 〈V,E〉
V Vertices of graph G, ri ∈ V, |V | = n+ 1
E Edges of graph G, 〈ri, rj〉 ∈ E
Θ Parameters (i.e. CPTs) of a Bayesian network
θ Conditional probability between variables, θ ∈ Θ
D Set of all log traces, |D| = m
Di Log trace that correspond to a single task, Di ∈ D, rj ∈ Di

τ Number of malicious workers in the platform τ ∈ N ≤ n

failures, which are already shown to be correlated in our
previous work [5]. The main reason for the correlated ma-
licious behavior is the joint ownership of multiple workers
by a malicious entity. We aim to extract the dependencies
between workers from historical task logs in order to detect
joint ownership. Task success probability can be substan-
tially improved cost-efficiently by avoiding such workers.

Graphical models are commonly used to express the
dependency structure between random events. In this work,
we utilize BNs, mainly due to their capability to handle
conditional dependencies and uncertainty. Another reason
is compactness since a BN can specify an exponentially
sized probability distribution using a polynomial number of
probabilities [12]. BN is a tool to represent and organize the
general knowledge about a particular situation. The qualita-
tive part (i.e. structure) of BN is a directed acyclic graph
(DAG) with vertices representing relevant variables of the
situation and edges representing the dependencies between
those. The quantitative part (i.e. parameters), on the other
hand, consists of the probabilities of relationships between
variables and their parents (direct causes) in the form of
Conditional Probability Tables (CPTs) [12]. Consider a set
of random variables R = {r1, r2, . . . , ri}. A BN can be
formally defined for R, as the pair 〈G,Θ〉, where G is
the above-described DAG, which is a powerful tool also
for dependence visualization and independence assumptions.
Each variable ri is directly dependent on its parents in G
and independent of its non-descendants given these parents.
Then, Θ is a set of conditional probabilities for each variable
given its parents. There exists a parameter θ ∈ Θ such that
θ = Pr(ri | parents(ri)) for each combination of values
that ri and its parents can possibly take [13]. Computing
conditional probabilities of variables that are not directly
connected in G are trivial via Bayesian inference.

In our BN model, there exists a variable for each of the
n workers (r1, r2, . . . , rn) indicating its final status (failed,

worker5 worker6

worker7

worker9

worker8
worker15

worker11

worker10

worker12

worker14
0.63

0.53
worker13

0.74

0.69

r7 r13 Pr(r15=0 | r7, r13) Pr(r15=1 | r7, r13) . . .
0 0 0.92 0.03 . . .
0 1 0.88 0.11 . . .

.

Figure 2. An Excerpt from the BN Structure and the CPT for Worker 15.

correct or incorrect result, etc.) and another binary variable
(rn+1) for the final status of the task. We further define the
success probability of a task, Pr(rn+1 = 0) in Eq. (1), as
the probability that more than half of the workers produce
the correct result, namely Pr(ri = 0).

Pr(rn+1 = 0) = 1− Pr

 ⋃
S⊆W
|S|=dk/2e

⋂
i∈S

ri 6= 0

 (1)

Fig. 2 demonstrates an excerpt subgraph from a BN
trained with real-world data from the iExec platform. The
nodes represent anonymized workers, whereas the links
between them are the dependencies inferred from data. For
demonstration purposes, we also annotate the links with
the corresponding probability values from the CPTs. For
instance, Pr(r14 = 1 | r9 = 1) = 0.63 is the probability
that worker 14 returns an incorrect result given that worker 9
also returns an incorrect result. Thus, greater values indicate
stronger dependency between the workers and may also
mean that they belong to the same provider. In Fig. 2,
we annotate only the probabilities that are greater than
0.5. Indeed, workers 10, 11, and 13 are malicious workers
injected into our data set. The dependency between workers
9 and 14, on the other hand, is inferred from the original data
set, hence a false positive. Partial CPT in the same figure
demonstrates that an error by r13 increases the probability of
an error by r15 from 0.03 to 0.11, given that r7 is error-free.

Each task is assigned a positive integer trust parameter in
the iExec platform. This value indicates the level of trust de-
manded by the consumer. Here, 1 is the minimum value that
corresponds to no trust requirement at all and higher values
correspond to increasingly more strict requirements. There
is no upper bound for the values that the trust parameter can
take. We map the trust parameter to success probability as
given in Eq. (2). Note that the required probability is 0 for
t = 1 and it approaches 1 as t approaches infinity.

Pr(rn+1 = 0) ≥ 1− t−2 t ∈ N (2)

Reasoning in BN models can be performed in both
directions. One may predict causes given symptoms, e.g.
determining which worker(s) caused the failure, or predict

symptoms given causes, e.g. estimating the failure prob-
ability given a set of workers [14]. Former is known as
diagnostic reasoning, whereas in this study, we focus on
the latter that is called predictive reasoning. To this end, we
introduce three BN models with variables denoted by RA

i,j ,
where A is model name’s initial, i worker, and j task index.

A. Joint Model

In this model, all four possible worker statuses at the end
of a task are taken into consideration as distinct cases in a
single joint BN. Consequently, the first n random variables
can take four different values as in Eq. (3).

rJi,j =

0, ωi,j = Kj

}
Worker returns the same
result as the consensus.

1, ωi,j 6= Kj ∧ ωi,j 6= ∅
}

Worker returns a
different result.

2, ωi,j = ∅
}

Worker fails and does not
return a result.

3, i 6∈Wj

}
Worker is not involved in
the task at all.

(3)

The joint model is able to capture the dependencies
stemming from possibly malicious intents (case 1) and
inadvertent failures (case 2) as well as any interdependencies
between those. Thus, it is the most general model.

B. Blend Model

Dependencies stemming from case 1 and case 2 in the
joint model are blended into a single case 1 in this model.
Thus, it does not differentiate between statuses other than
the correct result. The cases of the model are given Eq. (4).

rBi =

0, ωi,j = Kj

}
Worker returns the same
result as the consensus.

1, ωi,j 6= Kj

}
Worker does not return the
same result.

2, i 6∈Wj

}
Worker is not involved in
the task at all.

(4)

Blending the two cases brings in a more compact search
space and CPT tables, hence less inference overhead. How-
ever, it may also result in the loss of information that is vital
to the accurate prediction of task success.

C. Dual Model

In the dual model, the two causes of dependency are cap-
tured in separate BN models. The first model, given in Eq.
(5), considers only the failure-free completion disregarding
the correctness of the results.

rFi =

0, ωi,j 6= ∅
}

Worker returns a result.

1, ωi,j = ∅
}

Worker fails and does not
return a result.

2, i 6∈Wj

}
Worker is not involved in
the task at all.

(5)

The second, on the other hand, equate non-involvement
and failure, only differentiating between correct and incor-
rect results. Thus, it focuses only on malicious intent.

rMi =

0, ωi,j = Kj

}
Worker returns the same
result as the consensus.

1, ωi,j 6= Kj ∧ ωi,j 6= ∅
}

Worker returns a
different result.

2, ωi,j = ∅ ∨ i 6∈Wj

}
Worker does not
return a result.

(6)

As a consequence of having two models, there are two
different conditional probabilities between all pairs of vari-
ables in the dual model. The final probabilities are computed
through the intersection of the two models as shown in Eq.
(7). This model assumes that failure and malicious events are
independent (i.e. Pr(rmi | r

f
i) = Pr(rmi) and vice versa).

Pr(rDi = 0) = Pr(rFi = 0 ∩ rMi = 0)

= Pr(rFi = 0) Pr(rMi = 0 | rFi = 0)

= Pr(rFi = 0) Pr(rMi = 0)

(7)

The dual model comes with an additional overhead due
to the presence of two BNs. It is not able to detect the
dependencies between these two, either. However, it might
model the dependencies of the same type in greater accuracy
in the absence of noise due to the other type’s interference.

IV. RELIABILITY-AWARE TASK REPLICATION

Distributed clouds are mainly intended for time-sensitive
services that are negatively affected by the delay overhead
of the reactive reliability techniques such as checkpointing
and re-execution. Thus, in practice, proactive replication
is usually implemented [15]. In this section, we present
our second major contribution that is a task scheduling
algorithm for estimating the optimum set of workers for a
task in terms of its success probability. The main goal of
the Reliability-aware Task Replication (RaTaR) algorithm
is to probabilistically guarantee that the selected workers,
where the task is replicated, reach the correct consensus in
bounded time. A consensus cannot be reached if either too
many workers fail or there is no majority in terms of outputs.
Worse still is the case that an incorrect output constitutes the
majority. As discussed earlier, this may be the case when
several workers are owned by the same malicious entity that
aims to get compensated without work or simply to harm.
Given a cost budget of the number of replicas (k), RaTaR
identifies the set of workers with the least inter-dependency,
and hence the lowest probability of joint ownership.

An exhaustive evaluation of all candidate sets would
result in O(C(n, k)) or O(nk) time-complexity. Instead,
we approximate the optimum solution by selecting only
one node from each dense graph partition. To that end,
we first partition the graph into k subgraphs and then
evaluate all combinations of subsets that contain exactly

Algorithm 1 Reliability-aware Task Replication
Input BN structure graph: G = 〈V,E〉

The number of replicas: k ∈ N
Trust needed by the task: t ∈ N

Output The set of selected workers for replication: R
1: G′ ← 〈V ′, E′,W 〉 # Define a weighted graph G′

2: V ′ ← V,E′ ← ∅,W ← ∅ # G′ is an empty graph

3: for all 〈ri, rj〉 ∈ E do # For each dir. edge in G

4: E′ ← E′ ∪ {ri, rj} # Add an undir. edge to G′

5: W ←W ∪ 〈{ri, rj},Pr(rj | ri)〉 # Add weight...

6: end for # ...to the edge based on BN

7: P[1 . . . k]← partition(G′, k) # Partition the graph

8: I[1 . . . k]← 0 # I holds the partition indices

9: pmax ← 0 # Maximum success probability

10: while true do
11: C ← ∅ # C is an initially empty combination

12: for i = 1 to k do # Add the next element...

13: C ← C ∪ P[i][I[i]] # ...from each partition

14: end for
15: p← Pr (rn+1 = 0) # Success probability (1)
16: if p > pmax then # C is currently the...

17: pmax ← p # ...best known solution

18: R← C # Update the output value

19: end if
20: if p ≥ 1− 1/t2 then # If t is satisfied...

21: break # ...then stop the search

22: end if
23: r ← k # The rightmost unexhausted partition

24: while r > 0 and I[r] + 1 > |P[r]| do
25: r ← r − 1 # Compute r by iterating over P

26: end while
27: if r < 1 then # If no combination is left...

28: break # ...then stop the search

29: end if
30: I[r]← I[r] + 1 # Move to the next element of r

31: for i = r + 1 to k do # Reset the partitions...

32: I[i]← 0 # ...to the right of r

33: end for
34: end while

Figure 3. Pseudo-code description of the RaTaR algorithm.

one element from each subgraph Vi. Although optimum
minimum-cut graph partitioning itself is NP-hard, state-of-
the-art heuristics can reach approximate solutions in near-
linear time [16]. In the worst case, subgraphs are of equal
size and search complexity is O(nk/kk) as shown in Eq. 8.

k∏
i=1

(
|Vi|
1

)
=

k∏
i=1

|Vi| ≈
k∏

i=1

n

k
=
nk

kk
(8)

An example near-balanced partition set with k = 3 for the
graph in Fig. 2 can be P3 = {{9, 12, 14}, {8, 10, 11, 13},
{5, 6, 7, 15}}. This partitioning ensures that only one of the

workers 10, 11, and 13 can be chosen for a task. Moreover,
the number of subsets to be evaluated is reduced from 165
(i.e. C(11, 3)) to only 48 (i.e. 3 · 4 · 4).

Fig. 3 presents the pseudo-code description of the RaTaR
algorithm. The first step (lines 1–6) is the conversation of
the BN structure G, which is a directed graph, into an
undirected one (G′) and its annotation with edge weights
of conditional probabilities. Therefore, G′ can be clustered
into k partitions in line 7. The output P is a two-dimensional
array where P[i][j] contains the node j in partition i. The rest
of the algorithm iterates over all combinations of k partitions
picking exactly one node from each partition by maintaining
an index for each partition I (line 8), adding the indexed
element from each partition to the set C (12–14), and
updating the indices (23–26, 30–33). For each combination
C, it computes the success probability p and detects the
combination R with the highest p (15–19). The search stops
prematurely if the required trust level (t) is reached (20–22)
or normally if all combinations are exhausted (27–29).

V. EVALUATION

A. Data Set

The experimental data set is composed of traces from over
3,000 tasks that ran on the iExec platform in June 2019.
iExec’s public cloud computing marketplace is composed of
multiple worker pools, each made up of one scheduler and
of multiple untrusted workers, as described in Sec. II. Each
record in the data set contains metadata about a task from
the main public worker pool, indicating which application
(Docker container) was run, selected trust level, address of
the workers that contributed to the task, timestamped status,
and consensus result. Worker addresses link to their on-chain
reputation, which can be queried separately.

B. Baselines

1) Naive Bayes (NB): NB is a generative model similar
to the BN. Yet, it is much simpler than BN as it assumes that
all attributes (workers) are conditionally independent of each
other given the class value (failure). Improvement of BN
over NB would quantify the significance of the dependencies
between the workers to the failure prediction.

2) Random Forest (RF): As an alternative to generative
models, we evaluate RF, which is a discriminative model.
It trains multiple decision trees and makes ensemble deci-
sions. It is known to be robust against dimensionality and
unbalanced classes [17], which are present in our use case.

3) Logistic Regression (LR): LR, also a discriminative
model, is one of the simplest but most widely used machine
learning algorithms. Different from RF, it assumes that there
exists a linear relationship between the attributes. When this
assumption does not hold it could be outperformed by RF.

4) No Prediction (NO): This baseline represents the
worst case that the failures are not predicted at all. In other
words, all sets of workers are expected to execute fault-free.

Table II
EXPERIMENTAL PARAMETERS

Parameter Definition Value

M
C r Variable values See Sec. V-D

k Number of replicas Lognormal(0.4, 0.6)

St
at

ic

m Number of tasks 3172
n Number of workers 328

Number of iterations 100
Number of CV folds 10

B
N −P Maximum number of parents 3

−A Initial count for BMA 0.5

R
F −P Size of each bag 100%

−I Number of iterations 1000

L
R −R Ridge value in the log-likelihood 10−8

C. Simulation Environment

BDMC environment is multidimensional in terms of pa-
rameters. Moreover, runtime performance is highly sensitive
to the values that parameters take. Thus, the outputs of
the performance evaluations vary greatly. To overcome this
difficulty and to obtain results with high confidence, we
resort to Monte Carlo simulation, which is successfully
applied to distributed computing environments [18], [19].
The main idea is to replace any parameter that has inherent
uncertainty with a probability distribution and repeat the
simulation with as many random values of these parameters
as needed to reach the intended confidence interval.

The simulation environment is developed in Java and
executed on an Intel Xeon E5-2650 processor with 256
GB random access memory. Weka 3 [20] implementation
of the machine learning algorithms is used via Java API
of Weka. These correspond to Cooper and Herskovits’s hill-
climbing algorithm for BN training [21], John and Langley’s
NB [22], Le Cessie and Van Houwelingen’s LR [23], and
Breiman’s RF classifier [24]. Table II list the parameters
used in the experiments. The first two are the Monte Carlo
parameters with random values. r indicates the final status
(fail, incorrect result, correct result, etc.) of each worker
at the end of each task as described in Sec. V-D. k, on the
other hand, is the number of workers that participate in each
task. For this, we used the real values in the data set, which
fits a Lognormal distribution. For each algorithm, we run a
sensitivity analysis to identify the parameter values with the
highest accuracy (NB is parameter-free). Each configuration
is evaluated 1000 times using 10-fold cross-validation.

D. Threat Injection

Since the failures in real-world cloud systems are rela-
tively rare, it is not feasible to collect enough training data so
that the dependencies can be accurately captured. Moreover,
there currently does not exist a malicious provider detection
policy on the platform. Thus, it is not possible to validate
that detected dependencies by the BN are accurate. Instead,
we inject malicious workers into the data set to evaluate
detection accuracy. This process is described via pseudo-
code in Fig. 4. Here, we first randomly select τ workers to

Algorithm 2 Injection of Malicious Workers and Threats
Input The set of data instances: D = {D1, D2, . . . , Dm}

The number of threats to be injected: τ ∈ N
Output The updated set of data instances: D

1: W ← {1, 2, . . . , n} # The set of worker indices

2: T ← randomSample(W, τ) # τ malicious workers

3: for all Di ∈ D do # For each data instance in D

4: a← 0 # The number of malicious workers

5: for all rj ∈ Di do # For each variable in Di

6: if j ∈ T then # If rj is malicious, change...

7: rj ← x # ...status to a placeholder

8: a← a+ 1
9: end if

10: end for
11: for all rj ∈ Di do # For each variable in Di...

12: if rj == x and a ≥ 2 then # If multiple...

13: rj ← 1 # ...change output to incorrect

14: else
15: rj ← 0 # Otherwise, keep it correct

16: end if
17: if a ≥ max

(
|Di|
2 , 2

)
then # If majority...

18: rn+1 ← 1 # ...change status to failed

19: end if
20: end for
21: end for

Figure 4. Pseudo-code description of the threat injection algorithm.

be considered malicious (lines 1–2) and then iterate over the
whole data set to inject malicious behavior (3–21) by these
workers. The final status of a task changes only if involved
malicious workers form the majority (17–19).

Our threat injection mechanism also mimics the prudent
behavior of malicious workers to avoid detection. They
produce incomplete or incorrect results only when they
have the majority of the workers on a particular task so
that their results would be the consensus and they will be
compensated. However, the iExec platform does not allow
workers to detect which or how many other workers are
assigned to the same task as them. Thus, they can only
predict having the majority. In the iExec data that we use in
this work, the mean number of workers assigned to a task is
2.44. Accordingly, injected threats act maliciously when at
least two of them are assigned to a task (lines 12–16) as this
would suffice to have the majority with a high probability.

E. Numerical Results

1) Failure Prediction: The first step in reliable worker
selection is an accurate prediction of whether a particular set
of workers would result in a task failure or not. Detecting
most of the failures (high recall) is our main priority. False
positives, that are non-failing sets classified as failing (low
precision) is tolerable to some extent. Since failures are
usually rare, low precision should not have a strong impact

on overall accuracy. We present overall accuracy and recall
scores of all algorithms in Figs. 5 and 6.

We observe a strong decay in accuracy with the baselines
NO and NB as the number of injected malicious workers
increases. This is because NO does not predict the failures
at all and NB assumes that the behavior of the workers is
conditionally independent. It is clear from the results that
the independence assumption is not valid in practice and
more advanced machine learning algorithms that capture
said dependencies are imperative. Accuracy of the BN,
RF, and LR algorithms are comparable, but LR is able to
maintain a slightly higher accuracy for a greater number
of malicious workers. However, when we turn to recall
results, LR is notably the worst performer. This indicates
that LR tends to classify tasks as success, which results in
low recall but high accuracy due to the rarity of failure cases.
Considering the importance of recall in our case, LR does
not turn out to be a suitable algorithm for failure prediction.
On the contrary, NB exhibits relatively high recall, despite its
low overall accuracy. The best recall scores are achieved by
the proposed BN approach, closely followed by RF in high
threat cases (i.e. τ ≥ 20). the recall score of NO baseline
is always zero since there is no learning. Other algorithms
generally achieve higher recall as τ is incremented due to
the increasing availability of failure data to train the models.

BN and RF outperform other algorithms in accuracy and
recall due to their capability of utilizing worker dependen-
cies in prediction. We present more detailed results in Figs.
8 and 9 in order to determine the winner between these
two and the confidence of the results. In accuracy scores,
BN is slightly better as it outperforms RF in six values
of τ in comparison to only one value that it is worse. In
four cases, the accuracy scores of two algorithms lie within
the 99.9% confidence interval (CI). In terms of recall, on
the other hand, BN is clearly ahead with a higher score in
10 of 11 τ values. RF particularly underperforms at low τ
values, which indicates that it fails to learn from limited
data. Another observation from Fig. 9 is the significantly
wider CI area of RF in comparison to BN. Recall values
achieved by RF vary greatly with the random selection of
workers, whereas BN is much more robust to randomness.

2) Failure Avoidance: In the second part of our evalua-
tion, we measure the actual improvement of the proposed
prediction models on failure avoidance using the RaTaR
algorithm and BN. To this end, we report the number
of failures occurred with each model based on real task
logs. These are the consequence of sets of workers that
are erroneously evaluated as reliable by the models but
failed their tasks. Fig. 7 compares the prediction models and
RaTaR algorithm to the default selection of workers in the
iExec platform. We observe that if only 3% of the workers
are malicious, 144 tasks (≈ 5%) are affected on average.
This increases to almost 704 failures (≈ 22%) with the
30% of the workers. Default algorithm results in at least 9.8

0 20 40 60 80 100
0.60

0.70

0.80

0.90

1.00

Number of Malicious Workers

A
cc

ur
ac

y

BN RF
NB LR
NO

Figure 5. Accuracy Scores of Baselines.

0 20 40 60 80 100
0.60

0.70

0.80

0.90

1.00

Number of Malicious Workers

R
ec

al
l

BN RF
NB LR

Figure 6. Recall Scores of Baselines.

0 20 40 60 80 100
0

200

400

600

Number of Malicious Workers

Fa
ile

d
Ta

sk
s

Blend
Joint
Dual

Default

Figure 7. Failure Avoidance of RaTaR Models.

0 20 40 60 80 100
0.85

0.90

0.95

1.00

Number of Malicious Workers

A
cc

ur
ac

y

BN
RF

Figure 8. Detailed Accuracy Scores.

0 20 40 60 80 100
0.70

0.80

0.90

1.00

Number of Malicious Workers

R
ec

al
l

BN
RF

Figure 9. Detailed Recall Scores.

0 20 40 60 80 100

10

20

30

40

50

Number of Malicious Workers

Fa
ile

d
Ta

sk
s Blend

Joint
Dual

Figure 10. Detailed Failure Avoidance of RaTaR.

times (Dual model, τ = 0) and up to 26 times (Dual model,
τ = 90) more failed tasks than the proposed algorithms. The
results clearly demonstrate that BN models and RaTaR are
highly effective in scheduling tasks to reliable workers.

We also compare the three prediction models in Fig. 10.
Although BN models predict better as τ increases (as shown
by previous results), more and more failures still occur due
to the greater number of malicious workers. The models
perform comparably close until τ = 30, however, they
start to diverge after this point. Between the joint and dual
models, the latter is slightly better, although 99.9% CI of
the two often intersects. As a consequence of ignoring the
distinction between malicious actions and failures, the blend
model is less accurate than the former two.

3) Runtime Performance: Fig. 11 presents the BN train-
ing times for the three prediction models. The absence of the
fourth value for random variables in the blend model does
not result in noticeable runtime performance improvement
to joint model. The dual model, on the other hand, take
almost double time to train due to the presence of two
separate BNs. We believe, barely noticeable improvement
of prediction performance in the dual model (in comparison
to the joint) does not justify its exorbitant training overhead.

Furthermore, we analyze the sample complexity of the
algorithms that is the number of training samples required
to converge to their optimal performance. In the previous
experiments, we use 90% of the data for training as a result
of 10-fold cross-validation. Here, we start with a tiny data
set of 100 instances (≈3%) and gradually increase its size.
Fig. 12 shows the recall scores of the algorithms normalized

to the [0, 100] range. We observe that all algorithms reach
their peak performance with at most 2,000 instances. BN
and NB have the lowest sample complexity and are able to
show their optimal performance with 1,200 data instances.
RF also reaches 97% around the same point but it peaks
only at 2,000. Moreover, its early performance (up to 700) is
significantly lower than BN and NB, whereas LR converges
even slower. These results explain the low performance of
RF and LR with small τ values in Fig. 6.

4) Cost Reduction: It is of interest to evaluate whether
proposed algorithms can maintain the reliability with fewer
replicas, hence the lower cost. The deciding factor here is
the trust parameter, which is agreed between the provider
and consumer in the Service Level Agreement [25]. In our
data set, the vast majority of tasks (3,114 out of 3,172)
require the trust levels of either one or four. Thus, we limit
our evaluation in Fig. 13 to these two values. As expected,
fewer failures occur with a high trust level due to the greater
number of workers involved in these tasks. The percentage
of failed tasks declines from 22% to 20% with the default
algorithm and from 0.71% to zero with RaTaR. We also
implement two alternative algorithms with a fixed number of
workers assigned to each task. We would like to remind that
the average number of replicas is 2.44 in our data set. With
two replicas (Joint–2), RaTaR is able to maintain almost the
same failure rate when t = 1, but increases to 0.18% when
t = 4. It can also eliminate almost all failures when three
replicas (Joint–3) are feasible. These show that RaTaR can
outperform the default algorithm even with fewer workers
and emphasize the need for a dynamic number of workers.

Blend Joint Dual
0.0

2.0

4.0

6.0

R
un

tim
e

(s
)

BN

RF

Figure 11. Runtime Performance Comparison.

0 500 1,000 1,500 2,000
50

60

70

80

90

100

Size of the Training Set

R
ec

al
l

C
on

ve
rg

.(
%

)

BN RF
NB LR

Figure 12. Sample Complexity and Convergence.

1 4
0

1

10

2 3

0.2

0.5

2

5

20

Trust SLA Parameter (t)

Fa
ilu

re
R

at
e

(l
og

%
)

Joint
Joint–2
Joint–3
Default

Figure 13. Impact of Replica Count and Trust.

VI. RELATED WORK

Failure resilience in the decentralized cloud is still an
open issue [26] despite its necessity for wide adoption. An
early discussion of reliability challenges in fog computing
is presented in [27]. Aral and Brandic [5], [28] introduce a
technique that exploits causal relationships between different
types of failures and channel all QoS related parameters
through availability. Nebula [29], a fog based computation
and storage architecture, ensures fault tolerance of compute
nodes through re-execution. Although data is replicated,
reliability is not a factor in replica site selection. Cloud
visitation platform [30], which copes with hardware hetero-
geneity problem in multi-clouds via hardware awareness,
solves failure resilience only at a local level. That is,
deployed applications are migrated to another node, after
a server failure. Li et al. [31] discuss a scheme for cloud
storage based on blockchain. Even though reliability and
redundancy are in the scope of the work, the dependency
between workers is not analyzed to improve storage alloca-
tion. Probabilistic model checking is another technique that
is recently shown to be effective for failure avoidance [32].

There exist a plethora of scientific works on the problems
of contribution validation and reputation management [33].
However, given the recent introduction of BDMC and the
new challenges this brings, existing mechanisms for grid,
peer-to-peer, or similar architectures, require modifications.
For instance, Sarmenta proposes a sabotage-tolerance mech-
anism based on credibility scores for volunteer computing
systems [11], however, in such systems financial incentives
of the workers are not relevant. Additionally, the attacks are
assumed to be independent in this work. More recently, a
blockchain-based authentication scheme for mobile clouds
[34] is proposed. Here, mobile devices participating in the
mobile resource pool are prevented to falsify data.

VII. DISCUSSION AND CONCLUSION

Smart Contracts and blockchain have the potential to
reshape the cloud market and boost the adoption of clouds
and fog computing. However, since BDMC enables small
providers to monetize resources and they are particularly

prone to failures, these aims can only be achieved through
increased reliability of cloud services and providers. This
paper proposes a model to predict the probability of failure-
free execution and correct computational task outputs by
relying on the potential dependencies between providers
extracted from historical log traces. This model is highly
effective in detecting malicious providers that secretly own
multiple workers with the intent of getting incomplete results
through while still getting compensated. We also propose
a probabilistic scheduler, RaTaR, based on the prediction
model and evaluate it using real runtime traces from the
iExec decentralized cloud platform.

The results demonstrate that dependency-aware models
(e.g. Bayesian networks) are able to identify reliable workers
with significantly higher accuracy than others. Moreover,
tasks scheduled through RaTaR result in up to 96% fewer
failures or incorrect outputs even though they utilize 18%
fewer workers on average. Thus, the proposed technique can
not only increase reliability but also decrease resource costs.
The reliability model presented here can be used in different
contexts and as part of other methodologies, in particular
for the composition of provider reputation and for reducing
failures in service execution. Moreover, although the RaTaR
scheduler is devised mainly to validate the reliability model
and it could be easily extended to cover other crucial aspects
of scheduling services, such as response time, availability
and hardware characteristics.

Predicting the reliability of cloud providers is only useful
in this context if malicious or providers with bad reputation
are penalized and prevented to create new profiles, as
historical information would be lost and the new profiles
would be neutral. However, before penalizing new profiles,
we need to consider one of the main benefits of BDMC:
the very capacity to facilitate the entry of new providers.
Therefore, new solutions to find the right balance between
these conflicting needs to be developed. Furthermore, our
prediction model relies on logs and historical data and its
precision increases with more data. Therefore, it requires
a certain amount of data before its deployment. Moreover,
it needs periodical retraining. We believe, however, that

devising an online machine learning methodology for the
prediction model as future work could enable it to cope
better with changes in the dependencies. Finally, we leave
the decision on the number of workers assigned to each
task as future work. RaTaR can be extended to optimize
the replication cost based on the trust parameter from the
consumer and conditional probabilities from the BN model.
Our initial results with different trust parameters and the
fixed number of replicas are promising in this direction.

ACKNOWLEDGMENT

This work has been partially funded through the Rucon
project (Runtime Control in Multi Clouds), FWF Y 904
START-Programm 2015 and EU H2020 Marie Sklodowska-
Curie Grant Agreement No.838949. The authors would like
to thank Onat Kaya for his support in log parsing.

REFERENCES

[1] R. B. Uriarte and R. De Nicola, “Blockchain-based decen-
tralized cloud/fog solutions: Challenges, opportunities, and
standards,” IEEE Com. Stand., vol. 2, no. 3, pp. 22–28, 2018.

[2] Z. Shi et al., “Operating permissioned blockchain in clouds:
A performance study,” in ISPDC, 2019, pp. 50–57.

[3] R. B. Uriarte et al., “Towards distributed SLA management
with smart contracts and blockchain,” in IEEE CloudCom,
2018, pp. 266–271.

[4] R. Buyya et al., “Intercloud: Utility-oriented federation of
cloud computing environments for scaling of application
services,” in ICA3PP, 2010, pp. 13–31.

[5] A. Aral and I. Brandic, “Dependency mining for service
resilience at the edge,” in IEEE/ACM SEC, 2018, p. 228.

[6] G. Fedak et al., “Blockchain-based decentralized cloud com-
puting,” iExec Blockchain Tech, Tech. Rep., 2018.

[7] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash sys-
tem,” bitcoin.org, Tech. Rep., 2008.

[8] X. Xu et al., “A taxonomy of blockchain-based systems for
architecture design,” in IEEE ICSA, 2017, pp. 243–252.

[9] R. Canetti et al., “Practical delegation of computation using
multiple servers,” in ACM CCS, 2011, pp. 445–454.

[10] S. Setty et al., “Making argument systems for outsourced
computation practical (sometimes),” in NDSS, 2012, p. 17.

[11] L. F. G. Sarmenta, “Sabotage-tolerance mechanisms for vol.
comp. systems,” in IEEE/ACM CCGrid, 2001, pp. 337–346.

[12] A. Darwiche, Modeling and reasoning with Bayesian net-
works. Cambridge University Press, 2009.

[13] N. Friedman et al., “Bayesian network classifiers,” Machine
learning, vol. 29, no. 2-3, pp. 131–163, 1997.

[14] K. B. Korb and A. E. Nicholson, Bayesian artificial intelli-
gence. CRC press, 2010.

[15] A. Aral and T. Ovatman, “A decentralized replica placement
algorithm for edge computing,” IEEE TNSM, vol. 15, no. 2,
pp. 516–529, 2018.

[16] D. A. Spielman and S.-H. Teng, “A local clustering algorithm
for massive graphs and its application to nearly linear time
graph partitioning,” SICOMP, vol. 42, no. 1, pp. 1–26, 2013.

[17] R. B. Uriarte et al., “Supporting autonomic management of
clouds: Service clustering with random forest,” IEEE TNSM,
vol. 13, no. 3, pp. 595–607, Sep. 2016.

[18] A. Aral and V. De Maio, “Simulators and emulators for edge
computing,” in Edge Computing: Models, Technologies and
Applications, J. Taheri and S. Deng, Eds. IET, (in Press).

[19] V. De Maio and I. Brandic, “First hop mobile offloading of
DAG computations,” in IEEE/ACM CCGrid, 2018, pp. 83–92.

[20] I. H. Witten et al., Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2016.

[21] G. F. Cooper and E. Herskovits, “A bayesian method for
the induction of probabilistic networks from data,” Machine
learning, vol. 9, no. 4, pp. 309–347, 1992.

[22] G. H. John and P. Langley, “Estimating continuous distribu-
tions in bayesian classifiers,” in UAI, 1995, pp. 338–345.

[23] S. Le Cessie and J. C. Van Houwelingen, “Ridge estimators in
logistic regression,” Journal of the Royal Statistical Society:
Series C, vol. 41, no. 1, pp. 191–201, 1992.

[24] L. Breiman, “Random forests,” Machine learning, vol. 45,
no. 1, pp. 5–32, 2001.

[25] R. B. Uriarte et al., “Defining and guaranteeing dynamic
service levels in clouds,” FGCS, vol. 99, pp. 27 – 40, 2019.

[26] R. Roman et al., “Mobile edge computing, fog et al.” FGCS,
vol. 78, pp. 680–698, 2018.

[27] H. Madsen et al., “Reliability in the utility computing era:
Towards reliable fog comp.” in IWSSIP, 2013, pp. 43–46.

[28] A. Aral and I. Brandic, “Quality of Service Channelling for
Latency Sensitive Edge Applications,” in IEEE EDGE, 2017,
pp. 166–173.

[29] M. Ryden et al., “Nebula: Distributed edge cloud for data
intensive computing,” in IEEE IC2E, 2014, pp. 57–66.

[30] M. Zhanikeev, “A cloud visitation platform to facilitate cloud
fed. and fog comp.” Computer, vol. 48, pp. 80–83, 2015.

[31] J. Li et al., “Block-secure: Blockchain based scheme for
secure p2p cloud storage,” Info. Sci., vol. 465, p. 219, 2018.

[32] J. Zilic, A. Aral, and I. Brandic, “EFPO: Energy efficient and
failure predictive edge offloading,” in IEEE/ACM UCC, 2019,
pp. 165–175.

[33] A. E. Arenas et al., “Reputation management in collaborative
computing systems,” SCN, vol. 3, no. 6, pp. 546–564, 2010.

[34] H.-W. Kim and Y.-S. Jeong, “Secure authentication-
management human-cent. scheme for trusting personal re-
source info. on MCC with blockchain,” HCIS, vol. 8, 2018.

